Context-Driven Exploration of Complex Chemical Reaction Networks
نویسندگان
چکیده
منابع مشابه
Uncertainty quantification for quantum chemical models of complex reaction networks.
For the quantitative understanding of complex chemical reaction mechanisms, it is, in general, necessary to accurately determine the corresponding free energy surface and to solve the resulting continuous-time reaction rate equations for a continuous state space. For a general (complex) reaction network, it is computationally hard to fulfill these two requirements. However, it is possible to ap...
متن کاملComplex and detailed balancing of chemical reaction networks revisited
The characterization of the notions of complex and detailed balancing for mass action kinetics chemical reaction networks is revisited from the perspective of algebraic graph theory, in particular Kirchhoff’s Matrix Tree theorem for directed weighted graphs. This yields an elucidation of previously obtained results, in particular with respect to the Wegscheider conditions, and a new necessary a...
متن کاملComplex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and p...
متن کاملUnderstanding bistability in complex enzyme-driven reaction networks.
Much attention has been paid recently to bistability and switch-like behavior that might be resident in important biochemical reaction networks. There is, in fact, a great deal of subtlety in the relationship between the structure of a reaction network and its capacity to engender bistability. In common physicochemical settings, large classes of extremely complex networks, taken with mass actio...
متن کاملTranslated chemical reaction networks.
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polynomial ordinary differential equations. The steady states of these mass action systems have been analyzed via a variety of techniques, including stoi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemical Theory and Computation
سال: 2017
ISSN: 1549-9618,1549-9626
DOI: 10.1021/acs.jctc.7b00945